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VARIATIONAL ANALYSIS AND APPROXIMATE
SOLUTIONS FOR TRANSPORT PHENOMENA

INTRODUCTION

Approximate methods have been applied to the solution of partial differential equations when

analytical forms of solution are not possible due to the nature of the particular problems under study.

Some types of approximate solutions can be directly applied to the given equation and some require

first the derivation of a variational form of this equation. The latter imposes certain restrictions on

applying approximate methods since many of the variational derivations are problem dependent.

The intent of this study is to provide the formulation of a unified analysis for partial differential

equations, such as the general transport equation, by methods analogous to those of classical mechan-

ics. The implementation of certain concepts of classical mechanics opens the way to a formulation of

the transport equation by means of generalized coordinates and leads to Lagrangian type of equations.

This approach simplifies the application of approximate methods for obtaining solutions to many practi-

cal problems of interest.

The variational analysis presented here involves a generalization of the concept of virtual work

from classical mechanics. The approach was first adapted by M.A. Biot and was applied to heat transfer

phenomena and irreversible processes [1,21. By extending the concept of virtual work to the general

transport equation a variational form of this equation can be obtained, which is problem independent,

and the resulting variational equation contains terms similar to those found in Lagrangian mechanics.

This approach should not be regarded as a "new method" for deriving variational formulations. It is

only an application of classical concepts and an extension of Lagrangian mechanics to derive a unified

formulation for the transport equation. One of the advantages of such approach is that the physical

significance of each term of the differential equation can be easily identified.

Maruscript submitted May 11, 1982.
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The governing equation for transport phenomena and the introduction of a vector defined as tran-

sport displacement are given in the first section of this study. Based on the definition of the displace-

ment vector the transport equation is written in a form similar to the equation of motion in mechanics.

In this form the governing equation will be used in the next section to derive the variational formula-

tion for the transport equation.

According to concepts of classical mechanics two types of variational formulations can be derived,

the fundamental form based on variations of the displacement field and the complementary form based

on variations of the stress field. The basic definitions and derivations for the variational analysis are

given in the second section and the two types of variational formulations are presented for the transport

equation. The analogy between the derived equations and those of mechanics can be justified by identi-

fying each of the terms of the variational equations to be similar to such quantities as potential func-

tion, dissipation function and generalized body and boundary forces. The dissipation function is a gen-

eralization of the concept introduced by Rayleigh in mechanics for s~stems with viscous dissipation.

The resulting Lagrangian equations, in terms of generalized coordinates, represented either type of vari-

ational formulation and they are not. problem dependent. As a consequence the generalized equations

can be used for obtaining solutions to physical problems governed by such equations as the transport

equation. Furthermore, many types of approximate solutions can be derived by expressing the field

parameters in terms of the generalized coordinates.

A particular example is given in the third section where a series expansion is assumed for the field

parameters. This expansion expresses the field parameters as a linear combination of the generalized

coordinates. Although such an approximation is restricted by the linear dependence on the generalized

coordinates, it may represent such approximations as a Fourier series expansion or an expansion in

terms of orthogonal functions. The derivation of the equations in terms of the above approximation is

given and it is shown that the finite element methods can be derived as a special case of this approxi-

mation [31. The discretized system of equations for a linear finite element approximation is given as an

example and four types of finite element models are derived. Two of the models correspond to the

fundamental variational formulation and the other two correspond to the complementary one.
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Numerical experiments and solutions to particular problems are given in the fourth section of this

study. In the first part of the numerical applications the error behavior of the finite element models is

investigated for a given problem with known analytical solutions. Furthermore, the convergence of the

models is investigated and the criteria for uniform convergence are discussed. In the second part of the

numerical applications, examples of numerical solutions are presented for a number of physical prob-

lems. From the example presented the efficiency of the computational models is discussed and one can

observe that the unified formulation presented here can be extended to a variety of physical problems.

1. BASIC EQUATIONS AND DEFINITIONS

The general form of a partial differential equation describing transport phenomena, such as mass

transfer, heat transfer or species concentration is given by

+ V, [-(xkt)C( k't)] -- i x t + S - K (C - C) (I)

where C is the transport variable, xj is the coordinate system, t is the time, V, is the transport velocity

in xi direction, ki1 is the tensor dispersion coefficient, S is the generalized source term and K is the gen-

eralized transfer coefficient.

In order to describe the kinematics of a medium, reference is made to two configurations. The

reference or initial configuration. at time t - t, and the present configuration at time t with C, and C

the values of the transport variable respectively. A dimensionless transport variable can be defined in

terms of C and C, if one considers the ratio of the change .. C of the absolute value of the transport

variable from the reference to the present state over the absolute value of that variable at the reference

state

O(Xk.t) - C C(2)
C. C"

In terms of the dimensionless variable 8, Eq. (1) is expressed as

ae + ( 8_ ) 8( 8V) K +LS (3)
-7 Oxi ax, ax+ C.
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From the physical point of view the dimensionless variable 0 can be interpreted as a generalized

deformation similar to mechanical strain. Define now a vector field H (xCk,t) as the transport displace-

ment vector, which is a function of the coordinates rk and time r, of the form

I Hi(Xk,t)

at

and

OI-f (xk, t)
a(xH) = 

(5)
a.-q

The interpretation of 0 as a deformation or dilatation (strain) is justified by Eq. (5). Further-

more, Eq. (5) may be considered as a constraint in the sense of classical mechanics and it must be

verified by the physical solution and by the variations of 8/t and 80 as

80 - -L (SH). (6)

The variations aH, correspond to virtual displacements with 0 and Hi being analogous to strain and dis-

placement in mechanics. Another quantity, which is defined in mechanics and it is related to deforma-

tion, is the stress tensor. Here a similar stress can be defined as

a. - EO (7)

where E is a modulus similar to the bulk modulus in mechanics. Eq. (7) may represent a constitutive

relation for a particular medium and together with Eq. (3) describes the behavior of that medium under

certain loading conditions.

The governing equation can be expressed in terms of the displacement field as

a-l Hi+V@ i KH, + hi (8)

a~t

where h, satisfied the equation

8 hi I t

- - Sdt. (9)
a , C'0

This equation does not uniquely determine h, but any particular field may be chosen to satisfy Eq. (9).

Such a field may be considered to be a given function of the coordinates and time. The dispersion

coefficient is a tensor with six components and with the property
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k,j = j,

hence, k,, is a symmetric tensor. If AY is the inverse of k,, then kX, is also symmetric and Eq. (8) can

be written as

X,1J --H - + VE) + X 1J(KH , -  (10).06
I at, 1 . I

Equations (5) and (8) represent a formulation which is defined as the displacement formulation for the

transport equation and this formulation reduces to the conventional one, Eq. (3), by combining Eqs.

(5) and (8). Furthermore, the three equations, Eqs. (5), (7) and (8), are analogous to the kinematic

relations, stress-strain relations and the momentum equation in mechanics.

The concept of transport displacement has been introduced previously by the author, under the

name of heat displacement, for describing heat transfer processes [4]. In general, transport processes

can be described either by the conventional transport equation, Eq. (3), or by the two equivalent equa-

tions, Eqs. (5) and (8). The introduced transport displacement is regarded as a generalized quantity

conjugate to the generalized deformation -0. This generalized presentation of the governing equation

for transport phenomena has certain features which will be discussed in the next sections.

2. VARIATIONAL ANALYSISt

A large number of variational formulations have been introduced in the past for deriving approxi-

mate solutions. The majority of them are based on the minimization of a functional which describes a

particular physical process. Such formulations are usually restricted to the conditions of the particular

problem and their applicability is limited. One wishes to have a unified approach for deriving varia-

tional formulations. Such formulations should be problem independent and they shold be derived

from physical considerations.

Classical mechanics has provided researchers with some powerful tools for solving problems either

analytically or by approximate methods. One such a tool is the principle of virtual work which has been

successful in solving a variety of problems. The principle of virtual work in mechanics has been

extended to such areas as thermodynamics (5] and variational equations can be derived which are not
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problem dependent for a variety of physical processes. Another concept largely used in mechanics is

the concept of generalized coordinates which can be used to describe a physical system. Generalized

coordinates can be interpreted as generalized displacements or velocities which specify the

configurations of a physical system [61.

The application of these concepts are not restricted to mechanics or only to certain media. In this

section the concept of virtual work is used to derive two variational formulations for the transport equa-

tion. The first is referred to as the fundamental form and is based on the displacement formulation of

the transport equation. The second formulation is based on the conventional form of the transport

equation and is referred to as the complementary form. These two forms are directly analogous to the

ones in classical mechanics where the fundamental form of a variational principle is given in terms of

variations of the displacement field and the complementary form in terms of forces. Both of these

forms are based on equilibrium or conservation laws governing the physical system.

2.1 Fundamental Variational Principle

The fundamental form is derived from the displacement formulation of the transport equation by

implementing the principle of virtual work. Consider a variation 8H, of the displacement field H, and

the corresponding variation 80 given by the constraint Eq. (6). If the medium is subjected to a virtual

displacement 8H, then the principle of virtual work requires that

VII Ii) 0fvH' , + v,@ + ,,, KH,- - 8.--, ,dv =-0. 011)

where the integration is extended over a volume v of the medium. Integration of Eq. (11) by parts

yields

OH, , d~cv-j + 0- --- (8 H ) dv +X, (KH, - 4,)SH, dv= - 0 n;H, ds. (12)

The surface integral is extended over the boundary surface s of the control volume v and n, is the unit

vector normal to the boundary pointing outward. The second term of the left hand side is written as

6



08 1 0!-)dv =6P (13)

and the scalar function P may be interpreted as a potential function, similar to the potential function of

mechanics, given by

P = 1/2 f dv. (14)

In terms of the variations 8P, Eq. (12) is written as

at If k, j"--! -+ V0JO Hidv + f ,j(K Ij - ! jlSH dv + SP = f n S8IJ ds. (15)

The variational relation given by Eq. (15) can be considered as the variational principle for the tran-

sport equation. Equation (15) must be verified for arbitrary variations of the displacement field H,.

with 0 defined as a function of Hi through the constraint, Eq. (5). Hence the variational equation

given by Eq. (15) is nothing but a variational statement for the transport equation with energy conser-

vation automatically satisfied. This variational principle must be understood in a broad sense since it

corresponds to the principle of virtual work in mechanics. It represents the fundamental form since it

was derived in terms of the displacement field.

2.2 Complementary Variational Principle

In the preceding section the fundamental form of the variational principle was derived for the

transport equation. The analogy with mechanics suggests that it is possible to derive a complementary

form of the variational principle for the same equation. Since the generalized deformation @, Eq. (5).

leads to the definition of the generalized stress o-, which is similar to the mechanical stress, then the

complementary form is derived by varying the stress field and expressing the conservation equation,

Eq. (3), in variational form.

In terms of the generalized stress a-. Eq. (3) is written as

ao + V.) - _ k,j + K-- S = 0 (16)

and for arbitrary variation So- an equivalent to Eq. (11) is obtained as

+ -L-(V ) - a k, I + Ko. - ES 8adv O. (17)
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Integration by parts yields

. O_' ~~0x + , &Td + A (8-)dvf 'KS(- -I- 5 & df, I , ' E v
fsk, tlj ds. (18)

The surface integral is extended to the boundary surface s of the volume v and n, denotes the unit vec-

tor normal to the boundary pointing outwards. Proceeding as in the previous section Eq. (18) is written

as

+ i,' dv +- S 8odv+ fP fnk a(- 8ods (19)
at~ -Ci f a.j CE I

where the variation 8P is given by

0 1 
J- f" --J + V, 1-( v (20)

and the scalar P by

e 7 0 O ,1
P- 1/2 j k -- dv. (21)

Equation (19) represents the complementary form of the variational principle for the transport equa-

tion. The different terms of the variational equation, Eq. (19) may be evaluated either in terms of the

generalized stress o- or in terms of the deformations @. The latter case corresponds to formulating the

variational principle for the transport equation in terms of a primitive dimensionless variable @.

The two forms of variational principles derived previously are generalized statements of conserva-

tion laws for a physical system and their existence is verified by concepts from classical mechanics.

Either form can be applied to the governing equation of many physical processes, but it first is neces-

sary to derive a more compact form of these variational equations which will be better suited to practi-

cal applications. Some remarks can be made regarding the form of the variational equations. A

significant difference between the two forms is the fact that the complementary form involves space

derivatives of the transport variable O. This does not present a problem as long as the space distribu-

tion for 0 is continuous. If discontinuities exist, as is the case in many practical problems, then the

complementary form is not the appropriate one to be used for the solution of such a problem. In gen-
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eral, when using the same approximate representation for the transport variable 0, the complementary

principle will yield results which are less accurate than those obtained by the fundamental form which is

based on the displacement field.

2.3 Generalized Coordinates

A physical system is usually described by a set of coordinates and the governing equations are

expressed in terms of these coordinates. In many cases, a given set of coordinates is not the most con-

venient one to describe a physical problem. As an example. for certain problems involving the motion

of a particle it is more convenient to use a moving coordinate system than a fixed one. It would be

very desirable, and practical, to have a general method for describing a physical system by a set of coor-

dinates which will provide a uniform method to represent and solve the governing equations for physi-

cal processes. Such a set is given by the generalized coordinates of classical mechanics. A set of gen-

eralized coordinates is any set of coordinates by means of which the position of a particle in a system

may be specified. The concept of the generalized coordinates and the method for describing a physical

system in terms of these coordinates was first introduced by Lagrange.

When a physical system is described by a set of generalized coordinates, it is the usual practice to

designate each coordinate by q and the set of n generalized coordinates by qk, k = 1. n. For a

physical system of N particles a set of 3N generalized coordinates may be specified, and since these

coordinates must have some definite set of values they will be functions of the time and also of the

cartesian system of coordinates. For a physical system which is described by a set of generalized coordi-

nates q,, the time derivative 4k is defined as a generalized velocity associated with this coordinate. This

generalized velocity, for example, can be computed in terms of cartesian coordinates and velocities. If

one assumes that qk- is a function of the cartesian coordinates ., and time t, then

q= = qA (x,t)

It is also possible to express the cartesian coordinates in terms of generalized coordinates as

.V, -, x, (qk-.t )

From the definition of the generalized velocity one obtains

9



Ox, 0Jx,
O t aqA

Other physical quantities, such as energy, momentum, forces etc. can be expressed in terms of

the generalized coordinates. For example the generalized momentum ,k associated with the coordinate

q, is given by

PO

when Tis the kinetic energy in terms of qk.

The subject of this section is to implement the concept of generalized coordinates to the two

forms of variational equations previously derived. By introducing generalized coordinates into the vari-

ational equations, they can be translated into a Lagrangian type of equations. This provides a unified

approach and the transport equation is represented in a generalized form independent of coordinate sys-

tems or physical conditions.

Consider the displacement field H, to be a function of a set of n generalized coordinates qA,

tf, - H (q.x,. i). (22)

The variations of H., or small displacements 8H,, are due entirely to the variations of the generalized

coordinates 8qk and they are expressed as

H, = 8q,. (23)
6qk

The variations 6qk can be identified as virtual displacements since they do not necessarily represent any

actual motion but only any possible motion of a system. Under such a motion there is an amount of

work done which is defined as the virtual work 8 W and it is expressed as

8 W - QkSq4 (24)

where QA, is defined as a generalized force associated with the coordinate q.

The variations of the potential function P, given by Eq. (14), are expressed as

0P8P- ap 8qk (25)

and the time derivative of the displacement vector is taken as

10



H, - aH..j, O + IH, (26)

Equation (2t) expresses the total time derivative of the vector H, and by differentiating with

respect to the generalized velocity 4', one obtains

51 , OH, (27)

qa 4 q

Taking into account Eqs. (23), (25), (26) and (27), the variational principle, Eq. (15), can be

transformed into a more compact form. The first term of Eq. (15) is written as

[OH, + .l o H , + JOI, (D

X - IeaHdv f .- I~ -- qkdv=- q4 28
f" 1J/ I at a[O a OqA (28)

where the function D is given by

D - 1/2 f XqH, + i.o)(H, + t),dv = 1/2 ,,,H~dv (29)

and the vector W is given by

hq= H, + (;o (30)

The vector W can be regarded as the total rate of the transport displacement and the function D

defines a dissipation function. A physical interpretation of both of these qualities can be given if one

considers some particular case of a physical process. For example, if the transport equation describes

heat transfer, then the vector H," represents the total convective and diffusive local rate of heat flow

and the function D the total dissipation of the physical process. This dissipation has been previously

introduced for systems with friction or viscous effects and it is known as Rayleigh's dissipation func-

tion.

In terms of the variations 8Pand 8D, Eq. (15) yields

8D + SP - 0 H, - 8qA ds + 8F (31)

f 5 aqk

The term 8Fof the right hand side of Eq. (31) combines the source and transfer terms and is given by

8 F - f X,,(-KH, + li) -- 8q, dv. (32)
Iqk
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and

F-fx HH, + hjHdv (3

The surface integral of the right hand side of Eq. (31) can be expressed in terms of a generalized boun-

dary force Q as

f,071 -b- - 8qkds - Q6qk (34)

where

Qk , dqk . ds. (35)

From the physical point of view, Eq. (34), can be interpreted as the virtual work, S W, done by the

force Q, on the inflow of a volume of fluid per unit area associated with the virtual displacement 8q k

Comparing Eqs. (24), (31) and (34) the relation

SD +SP- SF=SW (36)

is obtained. This can be regarded as expressing conservation since the virtual work done by the gen-

eralized boundary forces is equal to energy gain or loss for a physical system.

For arbitrary variations of the generalized coordinates Eq. (36) is written as

_D + P F (37)
a 4k a "Qk + 8qk ' (7

For the set of n generalized coordinates Eqs. (37) constitute a system of n differential equation for the

unknowns qk. These equations are of the same form as the equations of Lagrangian mechanics for the

slow motion of a dissipative system with negligible inertia forces. For example, for the particular case

of heat transfer the potential function is regarded as a thermal potential and the function D as the total

heat dissipation function. The function F may be due to internal heat generation and/or heat transfer.

Furthermore, the generalized forces Qk represent thermal forces due to the temperature distribution at

the boundary and they are defined by Eq. (34) as the work done by Q, under the displacement 8qk.

This generalized derivation in terms of the generalized coordinates, can be extended to the com-

plementary form of the variational principle. The derivation is identical and it yields a set of equations

12



similar to Eqs. (37), the difference being that they are derived in terms of the transport variable 0. If

one assumes that 0 is a function of a set of n generalized coordinates 4, then

0 - 0( , x,, t). (38)

Following the same steps as for the previous derivations the Lagrangian equations are

aD + 3 P +- L (39)

where

0 l2f+~ v I 0+ Va@Idv (40)

1/2 f I -60 + a-V- 0 2 dv (41)

Vi' a X, Ix
f-- 12 K-&2 + S- (Iv (42)

and

, -qj, a__o0oa__0_o s. (43)

As one may observe from Eqs. (40) to (43) the complementary variational principle translates to simi-

lar types of equations as the fundamental form, but there is an important difference between the two

formulations. The latter form involves spatial derivatives of the transport variable 0 in the expressions

for the functions D, P and the generalized forces Q,, This is a disadvantage of the complementary

form, as it was mentioned earlier, especially for applications to problems with discontinuities on the dis-

tribution of the primitive variables. Although each of the formulations was derived in terms of a

different set of coordinates both can be represented by the same type of generalized equations. This is

verified by the unified approach used to derive the Lagrangian type of equations and also by the fact

that the transport variable 0 and the displacement field are ccrijugate variables related by the constraint

Eq. (5).

The concept of generalized coordinates provides the basis for deriving the Lagrangian formulation

of the transport equation. From the physical point of view the generalized coordinates can describe a

system completely and the Lagrangian equations can provide an accurate formulation of the physical

13



problem. A particular advantage of the formulation is that it was derived independently of a particular

representation of the field variables. Furthermore, the above analysis can be extended to many physical

systems governed by equations other than the transport equation.

The Lagrangian types of equations derived in this section do not represent a new mathematical

theory but a different way of expressing a conservation law. The main feature of these equations is the

manner in which they were derived. It is evident that these equations have the same form in any sys-

tem of coordinates and from classical mechanics one can verify that the functions involved in

Lagrange's equations have the same value for any coordinate system. The unified form of these equa-

tions is of great value not only for advanced formulations in mechanics but they also provide a starting

point for approximate solutions to physical problems.

3. APPROXIMATE METHODS

The partial differential equation describing transport phenomena was transformed into a set of

ordinary differential equations expressed in terms of generalized coordinates. The equations obtained

can be solved analytically for a number of physical problems. For many of the problems encountered

in practical applications, analytical solutions are not easy to obtain and approximate or numerical solu-

tions are sought.

The generalized nature of the previously obtained equations is most appropriate for applying

approximate solutions. Since these equations are given in terms of generalized coordinates, the field

variables describing the physical process are assumed to be functions of these generalized coordinates.

Many different expressions or combinations of the generalized coordinates can be used to form the

functional representing the field variable. In order to demonstrate the procedure one may assume a

linear dependence of the field variables on the generalized coordinates. This specific representation by

no means restricts the previously derived formulations to only linear functional approximation. The

main reason for such a choice is the fact that a variety of numerical solutions are based in such approxi-

mations and as will be shown later the finite element method can be derived as a special case of the

generalized formulations.
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3.1 Linear Functionals

The linear dependence of the displacement field H, on the generalized coordinates is expressed as

H,(q k., x, = Jik(.XJ)qk(t) (44)

The generalized coordinates q. may be functions of time and they are treated as the coordinates
describing the physical system. From the physical point of view they represent degrees of freedom and

the functions .i'k (xi) specify the extent to which qk participate in the functions H,(x 1.t). The approxi-

mation of the displacement field given by Eq. (44) is quite general since no specific expressions are

given for the functions Jik. Furthermore, Eq. (44) may represent approximations such as Fourier series

or series expansions in terms of orthogonal functions. Similar approximations can be used for the tran-

sport variable 0.

In the following the fundamental form of the variational principle will be used to derive the

approximate system of equations for obtaining numerical solutions. For the complementary form the

derivation will not be given since it is identical to that of the fundamental form.

The Lagrangian type of equation given by Eq. (37) can be translated to a system of ordinary

differential equations in terms of the generalized coordinates qA. by using the approximation, Eq. (44),

for the displacement field and by first defining the time and spatial derivatives as

,- = 4k.Jiki (45)
and

a - = q k f k , .
( 4 6 )

In terms of these definitions the dissipation function D is evaluated as

D - 1/2 f,, X,(4.J i + ,qkf,.,.,n)(WJj + 'ql./.)dv

or

D = 1/2 dih4i 4j + v,, hq,
where

dij - fv AA./' jjfdv 
(47)
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and

vI) kil Vkj;Ifr, .mdv. (48)

Similarly, the potential function P is evaluated as

P - 1/2 p, ,q, qj (49)

where

P-j - fv Jik.kbt.ldv. (50)

The function F transforms to the form

F = S,q - l/2wq, qj

where

$, f kihf dv (51)

and

w,- f - f KxkIfkfhdv. (52)

Finally the boundary forces Q, are expressed as

Q, = f onfNs (53)

Substituting the expressions for D, P, F, and Qi from the above equations into Eq. (44) yields

d,4, + (v,, + p,, + wij)q, - Q, + S,. (54)

This matrix equation represents a system or ordinary differential equations for the unknown field

parameters qj, which may represent displacements. The generalized coordinates describe the physical

system by means of a large but finite number of variables and their number will determine ,he size of

the above system of equations. The solution of Eq. (54) yields the approximate solution for the tran-

sport equation. The order of approximation of the numerical solution is determined by the functions

;,(xk) and depends on the accuracy of the solution required and usually on the complexity of the phy-

sical problem.

For the evaluation of the matrix coefficients of Eq. (54) the integration domain is considered to

be taken over the volume v in the n-space of the coordinates x,, where

16



dv = ty &, ... dx,.

In a more general sense the integration domain can be extended over all n + I coordinates x, and t

instead of only the n coordinates x,, where

dr= dxl , dx2 ... dx, dt.

This extension of the integration domain will yield the same Lagrangian-type equations since the unk-

nown physical quantities can be expressed in any functional form in terms of generalized coordinates.

For this particular case the approximation given by Eq. (44) will be replaced by

H, (xkt) = j (Xk) g,(t) q,". (55)

It should be noted that the approximation given by Eq. (55) is more restrictive in nature than the one

given by Eq. (44) since one assumes a known dependence of the variables on time through the func-

tion g,(t). The generalized coordinates, in this case qf, represent values at the i th point in space and

at the n th point in time. The respective time and spatial derivatives of Eq. (55) yield

(56)

H,., = fj., (xi ) g,(z) q.

A system of equations in terms of the generalized coordinates q," can be obtained by substituting the

approximation given by Eq. (55) into the Lagrangian equations. The expressions for D, P, Fand Q,

are evaluated as for the previous approximations and they are

D - 1/2 [dijk + V,A1AI qAql

P = l/2pikq,qJ (57)
F - Sikq,'- ]/2w*uAqi kq11

where

dit= f ._ rnnf mf , ,"d r

v,,kI = f d V 7fnffl.gg/dT

PijkI - f i f , ,,,gkgjdr (58)

S5k = f Xmnf m,gkdT

w,jkt - f KX,,f,,fgkgjdr.

Substituting the above expressions into the Lagrangian Eq. (44) yields

[dyk + v,,1 + PA + w,k,]q, Q + Sj, I 1,li (59)
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where the boundary forces Q1 are given by

QI;- frfkm.mfjggld$. (60)

The matrix Eq. (59) represents a system of n + m algebraic equations for the unknown field parame-

ters, the generalized coordinates q,-, and the domain of integration r of the matrix coefficients is

extended over the n + I coordinates x, and t.

The Lagrangian type of equations and the two systems of differential and algebraic equations

derived in this section represent two examples of approximate methods which can be applied to solve

problems on transport processes. The application of the derived formulation to a physical system can

be carried out by dividing the domain of the system into a finite number of subdomains connected by

common boundaries. Each of these domains constitutes a sub-system that can be analyzed separately

by the system of equations derived in terms of generalized coordinates. For each sub-system s the two

systems of equations may be written in a general form as

A =js)qj - Q(s) (61)

where q, are the generalized coordinates for the sub-system s, Q.(S) are the associated generalized boun-

dary forces and As) the matrix coefficients of the system of equations which were derived from the

Lagrangian equation for the domain s. Taking the sum of Eq. (61) over all the domains of the sub-

systems, the equation for the total system is written as

Aq, = Q, (62)

where Aij is now the matrix coefficient for the system of equations corresponding to the total domain

and Q, are the forces only at the boundary of the total system. This result is justified by the fact that

the summation extends to the variables not only at the interfaces of the sub-systems but also to the

variables at the boundary of the total system. However, at the interfaces the forces are in pairs that

cancel out. For example, for two sub-systems s and s'with a common boundary the generalized coordi-

nates at the interface are q, and the corresponding forces are Qj and Q1'. From the definition of the

boundary force, the outward normal vectors for the domains with common boundaries are in opposite

directions, hence

Q, -Q
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or (63)

Q, + Q,° 0.

This leads to the cancellation of all the forces at the interfaces and the derived Eqs. (62) include only

the forces at the boundary of the total system.

The procedure of dividing the domain of a system to sub-spaces is commonly used in approximate

methods and a typical example is the identical procedure used for the analysis of a physical system by

the finite element method.

3.2 Finite Element Method

A variety of approaches can be found under the name of the finite element method. Such

approaches include the well known Galerkin methods, the Rayleigh-Ritz methods and many others

which are usually modifications or derivatives of the ones mentioned. The formulation and derivation

of the Galerkin method are well known and the method has been successfully applied to a variety of

problems for obtaining numerical solutions. The Galerkin approach is usually referred to as the con-

ventional finite element method in contrast to those which are based on modification of the Galerkin or

non-conventional approaches. The intention here is to show that the conventional finite element

method is a special application of the present generalized formulation. Consider the following approxi-

mation for the displacement field H,

H,(x,t) = ao + aix + a2x
- + a3x

3 + .... (64)

and the corresponding deformation field e

() = a, + 2ax + 3a3x
2 +.... (65)

where the a (i - 0, 1, ... n) are time dependent coefficients to be determined. Although the approxi-

mation given by Eq. (64) is restricted to one dimensional space, it can be easily extended to two or

three dimensions since the derived formulations for approximate methods are of general form. In

order to demonstrate the derivation of the matrix equation for the finite element method only a first

order approximation will be considered here. Higher order approximations have been considered in

previous studies [3,41 and their derivation is carried out in a similar way as the first order one. For a
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first order approximation the derived finite element models correspond to linear element models with

two degrees of freedom. Four such linear elements will be considered here. The first two are linear

displacement models denoted by DFEM and DFET and correspond for the approximations given by

Eqs. (44) and (55). The last two are conventional linear models in terms of the primitive variable 0

and are denoted by CFEM and CFET. The displacement models are derived from the fundamental

form of the variational formulation and the conventional models from the complementary form.

3.2.1 Displacement Models

(a) DFEM

Fro -n Eq. (64) the approximation of the displacement field H(x.t) for the linear element of

length Ax is given by

H(xt) 1 - H,(t) + - H,(t) (66)

AXJ A X

where H, and H2 are the nodal values of the displacement. They can be identified as the generalized

coordinates q, and q2 with the corresponding basis functions J.' and ./v,2 given by

and f, 2 = 67)
tAX AX

Then. according to Eq. (44), the approximation Eq. (66) is

Hx, t) = f.,(x)H,(t). (68)

For the deformation 0 the approximation is evaluated from Eq. (67) as

0(x,t) "I (H 2(t) - HI(t)). (69)
AX

Note that within each element 0 varies only with time for the linear approximation of the displacement

field. This is analogous to a constant strain element in mechanics.

The matrix coefficients of Eq. (54) are evaluated in terms of Eqs. (66) and (69) as

[dj] - .4 Ax . Pi A 1_1 -1

(70)

• -,V1 , AKAx 12 1i

Iv,,] 1 1 6k
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and

Q,L. Q =- . Q, 4eQ2. -

where .4 is the cross sectional area of the element, k is the diffusion coefficient and V the transport

velocity. If one also assumes a linear approximation for the source term then S, from Eq. (51) is

evaluated as

44Ax2 11 J A A_, IS1 (71(S') 6 6 11 2i /hJ 6k lS271

where S, - 2/i + /12 and S2 = ii, + 2h,. The matrix equation for the DFEM model is then assembled

as

211 21 jJ + 1 3 V 1-1 11+ # _1 [ -. 1 + K4 121111HI} =-0 1~e + {S2;} (72)

The matrix equation, Eq. (72), has been derived in dimensionless form according to the transforma-

tions

-C o" - Co -LH

L C -C 0G C - C, L

(73)

W k V, V ,EK KL 2  L C0  St
SL- k k ' , - C

Here L is a characteristic length and C a constant reference value for C. The bar has been eliminated

from Eq. (72) for simplicity.

(b) DFET model

If one now considers the approximation given by Eq. (55), then the linear approximation for

H(xt) and O(xt) will be given as

H(x,t) I- I+ -IIl I- HI + -L t H- (74)
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and

O(x,t) - 1- (-HI + H2 ) + ±(-H2 + H 2 - -Lei+ -L-2. (75)

The generalized coordinates qk and the corresponding function J,, and g, are identified as

ql - HII, q H2 ,. q' - H, q2 - H 2  (76)

i - x (77)

g I" 1 tl ,tz=

The matrix coefficients are evaluated from Eq. (58) and the matrix equation for the DFEMT model is

assembled as

~-2-1 21 -2 2-1 1 2 -2 1 -1 H2 -(201 + E2)
-1-212 A -22-11 At -2 2H At (20'1+2) (78)-, + oV,,- + 2 -2 2 m - /_,+  /
-2 -12 1 AX -1 1-2 2 2~ 1 -1 2 -2 Hi = x 2-- ~(0' +2E)'
-1-21 -11-22 -1 1-2 2 H? (Ol+ 202)

The two sets of equations given by Eqs. (72) and (78) represent the displacement finite element

models for obtaining numerical solutions of the transport equation. Both models were derived from the

fundamental form of the variational formulation as examples of approximate methods.

3.2.2 Coniventional ,Models

(a) CFEM Model

The approximation for the transport variable 0 for the linear element of length Ax is given by

= - __:i ( + -.\ (79)

where 0 and 02 are the nodal values of the transport variable. They can be identified as the general-

ized coordinates q, and q2 with the corresponding functions J", and i,2 given by Eq. (67).

The matrix coefficients and the expressions for D, P. and F, and Q1 are evaluated from Eqs. (40)

through (43) and the resulting matrix equation is given by
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2J 11~ r-ij +I [ l 2 111 +-d 6- j~I+ + K, (80)

The above equation has resulted from the complementary form of the variational formulation and is

identical to the finite element equations obtained by the conventional Galerkin method. Furthermore

the matrix coefficients are identical to the ones given by Eqs. (70).

(b) CFET Model

The linear approximation for the transport variable ( is given by

0 (N.) t I 1+ II- - )1 -0 (811

As for the previous approximations the generalized coordinates can be identified as

q/= /, i= 1, 2. j = 1, 2 (82)

and the corresponding functions ',, and g, are given by Eqs. (76) and (77). The matrix coefficients are

evaluated in terms of Eq. (81) and the matrix equation for the CFET model can be derived from Eq.

(78) by replacing the nodal unknowns H/ by 0j.

The four finite element models presented in this section can be grouped into two types of models

which correspond to the general approximation given by Eqs. (44) and (55). The first type can be

represented by the following generalized equation

d1 , + (v, + p,, + v,,)qj = Q, + S, (83)
where the matrix coefficients are given by Eqs. (70) and the generalized coordinates are identified as

DFEM model: q= -H, i - 1, 2
(84)

CFEMmodel: q,-O, i- 1, 2.

For the DFEM model Eq. (83) should be used together with the constraint

H,) (85)

The second type of models can be represented by

[diik, + v.'k. + P,,AW + w,,I] q,' = Q,1 + S (86)
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where the matrices are given by Eqs. (78) and the generalized coordinates are identified as

DFET model: q,)- H,' 1. 2. /-1, 2

CFET model: q;' =; = 1. 2. j = 1, 2

and for the DFET model Eq. (83) should be used together with the constraint given by Eq. (75). In

the following table the four models are presented in summary.

Table I

Generalized Type of Matrix
p Coordinates Equations

Only for DE I Ordinary

spatial coordinates Differential
S-type CFEM q, = , Eq. (83)

For both spatial DFET q = Hi: Algebraic
and time coordinates Eq. (86)
S-T-type CFET

Both types of models have been used to solve problems of transport phenomena and some exam-

ples will be given later in this study. From these examples a realistic comparison between models and

also an evaluation of the models is possible.

The generalized variational formulations and the derived approximate methods presented here

represent a unified approach for describing transport phenomena. Some of the advantages of this

unified approach are as follows:

* The variational formulation is problem independent.

" The presentation of the transport equation by generalized coordinates simplifies the complexity of

the equation.

* The Lagrangian type of equations are most suitable for obtaining approximate solutions.

* The finite element method can be derived directly as a special application for approximate solutions.
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* The derived finite element models can be represented by one generalized model.

0 The displacement models are most suitable for solving problems with discontinuities.

In the following a number of numerical solutions will be presented for specific boundary value

problems and the error behavior of these numerical solutions will be investigated.

4. NUMERICAL APPLICATIONS

The transport equation is considered in this section as describing convective heat transfer. With

this choice of a transport process, one can identify the transport parameter (-) to represent temperature

defined by F -T
04 = T-TT,

where T and T, are absolute temperature at the present and reference states respectively and the tran-

sport displacement will be then called the heat displacement [3].

Convective heat transfer provides a good test case for numerical solutions since a variety of boun-

dary conditions can be considered. Before numerical solutions to specific problems are presented it is

appropriate to investigate the stability and the error behavior of the four element models. Since it is

necessary to use a numerical scheme to approximate the time derivatives of the S-type models, a finite

difference scheme is chosen for that purpose. The scheme is known as the backward finite difference

approximation. It is an implicit, unconditionally stable scheme and the general approximation for the

first derivative is given by the following series expansion [71

dl,"() 1 av(t,_) + O(At" ) (88)
(it At '

where a, are constant coefficients and their values are given for up to a fourth order approximation in

Table 2.
Table 2

Order of Approximation a, ) a 4 a5

First, n- 1 1.0 -1.0 0.0 0.0 0.0 0
Second, n - 2 1.5 -2.0 0.5 0.0 0.0 0
Third, n = 3 11./6. -3.0 1.5 -1.13. 0.0 0
Fourth, n - 4 25./12. -4.0 3.0 -. 4/3. 0.25 0
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The error analysis of the numerical solution of a particular problem will be presented in the following

section and some criteria for convergence and error estimates will be discussed.

4.1 Problem Definition

One representative example of transport phenomena is the convection and diffusion of heat by a

moving fluid. The governing equation for the one dimensional case of convection-diffusion is given by

a + K, - D,, - - 0 (89)

at Ox Ox 2

where (-) is the dimensionless temperature. V,, is the constant flow velocity and D,, a constant

diffusivity. It has been also assumed that there is no heat sources or sink involved in the fluid. The

boundary and initial conditions are as follows

(-)(x, 0) = 0.0. 0.0 < x < L

O(0.t) = 1.0. 0.0 <t < , (90)

O)(Lt) = 0.0. 0.0 t t,

where L is a finite characteristic length approximating infinity. The analytical solution to the above

problem is given by

0. Iexp erfc 2+',t + erfc 2  t  (91)

The solution of the convection-diffusion equation in the semi-infinite space is a typical example for

testing numerical solutions and studying error behavior. Its numerical solution is challenging, especially

for small values of the diffusion coefficient (D, << V'), where the discontinuities in the temperature

field are difficult to simulate numerically.

4.2 Error Analysis

Numerical solutions of the above problem are obtained by the four finite element models previ-

ously derived and these numerical solutions are compared to the analytical one, Eq. (91), in order to

investigate the error behavior. For the S-type models (DFEM and CFEM) a first order backward finite

difference scheme is chosen to approximate the time derivative. This is an appropriate choice since the
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order of accuracy of the first order scheme is the same as the accuracy of the linear in time approxima-

tion of the S-T-type models (DFET and CFET).

The error of the numerical solution is the average error E, oer the entire length i. at a particular

time level and i, is evaluated by the following relation

E, - -, 1-  - -, (92)

where N is the number of elements used for the space discritization and 0- -), i is the absolute local

error. For illustrating numerical results, the characteristic length L = I is divided into a uniform mesh

with VE elements and VP = NE + I nodal points (degrees of freedom), and the dimensionless ele-

ment length then equals to 1/NE. Three sets of values for the constants iV, and D, will be used in

investigating the convergence and error of the numerical solutions. These values are shown in Table 3

and each set is used for all four models.

Table 3

Case P,, D, Name

1 1.0 0.001 Convection
11 1.0 1.0 Convection-Diffusion

III o0 1.0 Diffusion

For each of these values four sets of results will be presented for all four models. The first set of

results is obtained for a constant value of Ax and variable At (Table 4) and the second set is obtained

for constant At and variable Ax (Table 5). The third for constant values of the ratio At/Ax (Table 6)

and the fourth set for constant values of the ratio At/Ax2 (Table 7).

Table 4

NE Ax At M, A/ At/Ax M - .

0.0001 0.002 0.04
0.00025 0,005 0.10
0.0005 0.010 0.20
0.00125 0.025 0.50

20 1/20.0 0.0050 0.100 2.00
0.0100 0.200 4.00
0.0125 0.250 5.00
0.0200 0.400 8.00
0.0250 0.500 10.00
0.0500 1.000 20.00
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Table 5

.1 t NE Ax A1 - -At!/1x .M2  A1t/1x 2

5 1/5.0 0.025 0.125
10 1/10.0 0.050 0.500
20 1/20.0 0.100 2.000
30 1/30.0 0,150 4.500

0.005 40 1/40.0 0.200 8.000
50 1/50.0 0.250 12.500
60 1/60.0 0.300 18.000
80 1/80.0 0.400 32.000

100 1/100. 0.500 50.000
_ 200 1/200.0 1.000 200.00

Table 6

NE Ax At M= At1Ax M 2 = -t/,.x2

10 0.100000 0.02500 2.50
20 0.05000 0.01250 5.00
40 0.02500 0.00625 10.00
50 0.02000 0.00500 0.25 12.50
80 0.01250 0.00312 20.00

100 0.01000 0.00250 1 25.00

Table 7

NE A x At M I =At/Ax M 2 =- At/Ax2

10 0.1 0.0250 0.250
20 0.050 0.00625 0.125
40 0.0250 0.00156 0.063 2.5
50 0.0200 0.00100 0.050
80 0.0125 0.00040 0.031

100 0.0100 0.00025 0.025

In all of the figures the average error is presented at three time levels. This is necessary in order

to investigate the error behavior throughout the time integration domain. The first set, Figs. 1-3, the

value of NE is constant (NE - 20) and the time step At was given values 0.0001 < At < 0.05. The

corresponding values for At/lAx and At/Ax 2 are given in Table 4. The second set of results are given

in Figs. 4-6 where At is constant (At - 0.005) and NE was given values 5 < NE < 200. Table 5 con-

tains the values for Ax and the corresponding values of at/lAx and Ar/tAx 2.
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4.2.1 Displacement Models (DFET DFEM)

In Figs. la through 6a results for the average errors E, are given for the two displacement models

and for the three cases of the coefficients V, and D,. In the first three figures (Ia, 2a, 3a). the error E,

is given as a function of At and the next three figures, (4a, 5a, 6a), E, is given as a function of NE.

The error behavior in all six figures follows a similar pattern. As At or NE increases there is initially a

reduction in the error of the numerical solutions, and a minimim error is reached. With further

increases of At or NE the error starts to increase but the rate of change is smaller than before the

minimum was reached. The difference between the values of the error for the two models is very small

for small values of At but it becomes noticeable as At increases with the DFET model being the more

accurate one. Similar observations can be made for the error behavior with respect to NE. The error

behavior in all six figures shows a nonuniform convergence as At increases or Ax decreases. This pat-

tern is not unusual since only At or Ax is changed while Ax or At remains constant respectively. Cer-

tain observations can be made from the results presented in the six figures.

* There is an optimum combination of At and Ax for minimum error for both models.

" To the left of the optimum point the error of the DFEM model is smaller than the error for the

DFET model. The order of accuacy is reversed just before the optimum point and the difference

in error between the two models becomes larger.

" For small values of the coefficient Do, (D, << Vo), there are larger differences in error between

the two models with the DFET being more accurate.

" As time progresses the value of the minimum error decreases and the optimum points are

translated to the right

" For large values of At or NE the error increases monotonically with time.

" There seems to be an area where the error curves for different time levels intersect, indicating that

a constant error value can be achieved for certain combinations of At and Ax throughout the time

domain. This is more pronounced in Figs. 4a-6a.
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The similarities observed in error behavior may lead to some optimum combination of At and Ax for

error control of the numerical solutions.

4.2.2 Conventional Mfodels (CFET CFEM)

In Figs. lb-6b results are given for the two conventional finite element models and for the same

set of values of the coefficients D, and V, as before. The error behavior with respect to At or Ax

shows similarities to the error behavior of the displacement models but there is no uniformity in the

error behavior. For example, for either constant At or Ax the error values reach a minimum but as

time progresses these minimum error values do not follow a regular pattern as for the displacement

models. Furthermore, the difference in error between the CFET and the CFEM model is much larger

than the difference between the DFET and DFEM models.

Another observation is the difference in error between the displacement and conventional models.

In all six figures the error values for the displacement models are two to three times smaller than the

corresponding values of the conventional models. For example, in Figs. 2a and 2b at small values of At

the error is about the same, but as-At increases (At > 0.01, MI1 > .2) the error for the conventional

models, Fig. 2b, becomes much larger. This is due mainly to the error involved in applying the boun-

dary conditions (x = L), and also due to the absence of the boundary forces. In the case of the con-

ventional models the boundary forces are zero for prescribed temperature at the boundary. Further-

more, as was mentioned earlier in this study, the presence of space derivatives in the complementary

formulation is the main drawback of the conventional models and they contribute to the larger error of

these models. In the following discussion certain examples will be used to demonstrate this defficiency.

The previously made observations on the patterns of the error behavior suggest that optimum

combinations of At and Ax can be defined for error control of the numerical solution. These combina-

tions can be based on optimum values of the ratio M', = At/Ax or the ratio Vf, = At/Ax 2. Typically

for a second order equation, such as the transport equation, the ratio AM, is the parameter for error and

stability control. The value of this parameter, when it is kept within certain limits, guarantees accuracy

and stability of the numerical solution [8].
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A careful examination of the results for the error, shown in Figs. la-6a, and the values of M,/

from Tables 4 and 5 which correspond to minimum error shows that there is an inconsistency. For

example, at time t - 0.5 Table 4 and Fig. 2a show minimum error at Af, - 5.00, (At - 0.0125), but

from Table 5 and Fig. 5a the minimum error is at M, = 12.5 (.VE - 50). What appears to be an

inconsistency in the behavior of the displacement models, with respect to the parameter Vf2, leads to

the observation that M, might not be the right parameter for error control of the numerical solution.

In contrast an examination of the error with respect to M, shows that at time t = 0.5 the minimum

values of the error, Figs. 2a and 5a, correspond to the same value of the parameter MI. In fact for

each value of the parameter .1 the corresponding error values are about the same in all six figures.

In order to study the dependence of the numerical solution error on the two parameters M, and

M, further analysis is needed. The error of the numerical solution now is investigated for some con-

stant values of the two parameters. Results are given for all four models and it is shown that uniform

convergence can be achieved either for constant M, or M2. Furthermore, it is shown that uniform

convergence does not always correspond to minimum error.

4.3 Convergence of the Numerical Solution

Numerical experiments on the error of the solutions in the previous section show that nonuni-

form convergence is obtained when either At or Ax alone is the dependent variable. It was also

observed that minimum error could be achieved for some optimum combinations of the two variables

At and Ax. It is a well known fact that in order to achieve uniform convergence both At and Ax should

be the dependent variables with the condition that the ratio At/Ax or At/Ax 2 is kept constant. The

results for the average error E,, in this section will show that uniform convergence is obtained for both

the displacement and conventional models when M1 or M 2 is kept constant. Some representative

values of M, and M 2 are given in Tables 8 and 9, with the corresponding values of At and Ax, for the

four models. Numerical results are presented in Figs. 7 through 15, for all models and all cases as

before, and for two values of each of the parameters M1 and M 2.

Results are given in the first three figures, Figs. 7a-9a, for the displacement models for constant

M - 0.25 and in the next three, Figs. 7b-9b, results are given for M 2 - 2.5. The uniform conver-
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Table 8

Af [ I 12 Ax A 

2.50 0.10000 0.02500
5.00 0.0500 0.01250

0.25 10.00 0.0250 0.00625
12.50 0.0200 0.00500
20.00 0.0125 0.00312
25.00 0.0100 0.00250

5.00 0.1000 0.05000
0.50 10.00 0.0500 0.02500

20.00 0.0250 0.01250
40.00 0.0125 0.00625
50.00 0.0100 0.00500

Table 9

M V1 1 V2 Ax t

0.250 0.1000 0.02500
0.125 0.0500 0.00625
0.063 2.5 0.0250 0.00156
0.050 0.0200 0.00100
0.031 0.0125 0.00039
0.025 0.0100 0.00025

0.500 0.1000 0.05000
0.250 0.0500 0.01250
0.1.25 5.0 0.0250 0.00312
0.100 0.0200 0.00200
0.063 0.0125 0.00078
0.050 0.0100 0.00050

gence of the numerical solution is obvious for either of the parameters Ml or At2. Examining each pair

of figures (Figs. 7a and b, 8a and b, and 9a and b) which correspond to the same set of the parameters

V, and D, one can observe the effect of M, and M2 in the error of the solution for the displacement

models. For both MI and M, the error reaches a constant value but these constant error values are

smaller for the case of constant M, than for the case of constant M,. This becomes more evident as

the value of D,, increases. For example, in Figs. 8a and 8b, for each value of Ax the corresponding

error value is much larger for constant M, than for constant MI. Furthermore, the corresponding

value of At for each Ax, Table 8, is less for the case of Al2 = 2.5 than for I 1 = 0.25. This behavior

of error is consistant with the error behavior of the previous section where it was shown that a smaller

value of At for a particular value of Ax does not always mean smaller error.
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Since in any numerical solution we are concerned not only with the convergence but also with the

amount of error involved and the economy with which the solution is obtained, it is obvious that in the

case of the displacement models the parameter for error control should be ,If and not If,. In the next

six figures, Figs. 10-12 results are given for the conventional models and for the same cases as above.

Again uniform convergence is obtained for both parameters M, and ,12 but the error values for con-

stant .1, are now larger than for constant Af2 . This is the opposite from what was the case for the dis-

placement models. Furthermore, the difference in error between the two conventional models, CMET

and CFEM, is much larger for Ml = 0.25 than for M2 = 2.5. It is obvious from the six figures that for

the conventional models the dominant parameter is M 2 and not M'l. Also for the larger values of At

(lI = 0.25) the numerical solution is more sensitive to the type of time integration scheme used.

It appears that for the displacement models the correct parameter for error control is the ratio M,

and for the conventional models, the correct parameter is the ratio M,. This can be justified first by

the type of equation involved in each of the formulations and second by the results obtained for the

average error of the numerical solutions. The equation for which numerical solutions are sought

through the displacement models E4. (8), does not contain second order space derivatives of the tran-

sport variable and only the ratio At/x appears in the approximations of this equation. In contrast the

equation for which numerical solutions are sought through the conventional models, Eq. (3), does con-

tain second order derivatives, hence the ratio %dA.v2 appears in the approximation of this equation.

The results presented in this section are in full agreement with this reasoning.

In the last part of this section two more sets of figures are given for different values of the param-

eters .111 and M,. These sets of figures together with Figs. 7a-9a and Figs. lOb-12b can be used to

evaluate and compare the displacement and conventional models. For the displacement models, Figs.

7a- 9 a and Figs. 13a-15a the error increases as the value of 1 increases from 0.25 to 0.5. A similar

behavior is observed for the conventional models as ,2 increases from 2.5 to 5.0. Comparing now

Figs. 7 a through 9a to Figs. 10b through 12b and Figs. 13a through 15a to Figs. 13b through 15b one

can observe that the displacement models consistently result in smaller error values than the conven-
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tional ones, especially for large values of Ax (small NE). Furthermore, the smaller error values are

obtained by the displacement models with a larger time step. For a given value of Ax, say Ax = 0.025,

the values of At which correspond to .MfI - 0.25 (DFET and DFEM) and M 2 = 2.5 (CFET and CFEM)

are A,t = 0.00625 and A12 - 0.00156 respectively. This can be easily observed from the two Tables 8

and 9 and from Figs. 7 through 15.

The following general observations can be made regarding the error behavior of the numerical

models.

" Uniform convergence is obtained for all models only when the ratio MI or the ratio M 2 is kept con-

stant.

" Uniform convergence does not automatically guarantee minimum error.

" For the DFET and DFEM models the minimum error is obtained when the control parameter is

m 1.

" For the CFET and CFEM models the minimum error is obtained when the control parameter is

* Of the two time integration schemes used, the finite element in time is consistantly more accurate

in all cases.

* The displacement models are computationally more efficient overall since they can achieve smaller

error than the conventional ones by using larger time steps.

" For all of the models the error decreases significantly up to NE = 40 and an increase of NE beyond

this value has only small effect on the numerical solution.
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Numerical experimentations based on the average error result not only in a good understanding of

the overall behavior of the numerical models but also how the numerical solutions obtained by these

models are affected by the parameters M1 or ,. From the results presented in the last two sections

and from previous studies some optimum values for M 1 and M2 can be determined. These optimum

values should correspond to small error but at the same time should hold the efficiency of the computa-

tional model at a high level. The range of values for Vfj is between 0.1 and 0.3 and for M12 is between

2.0 and 4.00. The exact choice of value sometimes depends on the conditions of the specific problems

and one might have to choose a smaller value for MI or N.

The experience gained from studying the error behavior can be used for obtaining solutions to

specific problems. From such solutions one can evaluate the efficiency of a computational model in a

more detailed fashion, and with respect to other parameters such as boundary conditions. In the next

section several problems will be presented for that purpose.

4.4 Numerical Examples

The computational models deieloped in this study will be applied to solve the general transport

equation for a number of physical problems. Numerical solutions of the transport equation, with the

associated boundary conditions are discussed in this section and results obtained from the displacement

(DFET) and conventional (CFET) models are compared to available analytical solutions. Results for

all case studies were obtained by using NE = 50 (Ax - 0.02) and M1 = 0.25 for the DFET model and

M, - 2.5 for the CFET one. The corresponding time steps are indicated on the figures for each case

study.

4.4.1 Advection Equation

This is the simplest form of the general transport equation representing a number of physical

processes such as mass conservation, convection of heat and free surface elevation in flow problems.
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The typical advection equation is given by

IL + VU - 0 (92)at a

for constant velocity fields. Here the transport variable is represented by the dimensionless density p.

In terms of the displacement field H(xt) the above equation is expressed as

OH + OH _ 0 (93)
Or a

with

p(Xr) 8H(x,t) (94)
ax

A typical set of initial and boundary conditions for the advection equation are

p(x,o) = 0.0 0.0 < x < 1.0
(95)

p(o't) 1.0 t > 0.0.

Numerical solutions are obtained for Eq. (93), displacement models, and for Eq. (92), conventional

models. For the displacement model the density p is evaluated through the constraint given by Eq.

(94) and the same equation is used. to express the initial and boundary condition in terms of the dis-

placement field.

The first two figures (16a and b) show results obtained by the two models for the classical prob-

lems of a discontinuity advected through space at four different time levels. Both models show the

same typical overshoots and the overall error is about the same for both models. No attempt was made

to suppress these oscillations since a realistic evaluation of the models is sought. In the second two

figures (17a and b) results are given for a different case of the advection equation. A point source term

is now included in the equation, with constant rate of production equal to one. The source is placed at

x - 0.5 and the mass produced is advected to the right with velocity V, = 1.0. For the CFET model

some oscillations exist in the region (x < 0.5) before the source. There oscillations are much smaller

for the DFET model. The oscillatory behavior of the CFET model is due to the discontinuity in the

density field imposed by the presence of the source term at x - 0.5. At the same point, the displace-

ment field is continuous and has a slope of one according to Eq. (9). -The absence of discontinuities in
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the displacement field not only reduces the oscillations about x - 0.5 but also results in a more stable

solution, as one can observe from the values of the density, close to the left hand boundary (x - 0).

Some of the solutions in the next examples show similar behavior and by a closer look at the displace-

ment model one can observe that boundary conditions are better handled when they are imposed

through the displacement formulation.

Although the advection equation is the simplest form of partial differential equation, its numerical

solution is challenging and a large number of publications exist on other types of initial or boundary

conditions as 'ell as different approaches. In the present cases the finite element method, in its sim-

plest form, .vas applied for the two derived formulations. Since the main objective here is to evaluate

the conventional and displacement formulations, we will continue to use linear finite element approxi-

mations for all cases of the transport equation.

4.4.2 Convection - Diffusion

The inclusion of a second order space derivative in the advection equation results in the

convection-diffusion equation. This'is the governing equation for a number of physical processes such

as convective heat transfer and energy balance, convective transport of species, pollutants, and momen-

tum transfer. The basic convection-diffusion equation is given by

+@ 0(- Da -0 2a =2 0 (97)at- + Vo at- - Do ;X72-

for a constant velocity field and diffusivity.

Here the transport variable is represented by the dimensionless temperature e(x,t) which relates

to the transport (heat) displacement in the same fashion as for the density

S,t) - H(x.t) (98)
ax

If a source term and a heat transfer term are included in the convection-diffusion equation, then Eq.

(97) is written as
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I I I -0

0+ Vo D - SS -K 0  (99)
at ax

where S, is the coefficient associated with the heat source term S (S, = 0 or 1) and K., is the heat

transfer coefficient.

In terms of the heat displacement field H(x,t) the convection-diffusion equation is written as

a-H + V D- - D, = s , h- & H (100)

Initial and boundary conditions associated with this equation are numerous. Here some typical boun-

dary conditions are considered and numerical solutions will be obtained for both computational models.

In Table 10 the initial and boundary conditions are given for each of the problems considered.

Table 10

Problem V D, So K Initial ConditionsT Boundary Conditions L - cc Figures

1 1.0 1.0 0.0 0.0 0(xO) = 0.0 0(1,0) = I.0,(-)(L,O) - 0.0 1 18
2 1.0 1.0 0.0 0.0 0(x,0) - 0.0 0(1,0) = sincot.1(L,O) - 0.0 19 1
3 1.0 1.0 1.0 0.0 (x,0) = 0.0 0( 0,t) = 0.0,(L ) = 0.0 20 1
4 1.0 1.0 1.0 0.0 O(x,O) = 0.0 " (0, t) = 0-.0,0(L,0) - 0.0 21

5 1.0 1.0 1.0 0.0 0(x, = 0.0 0(-L,t) - 0.0,9(Lt) = 0.0 22
6 1.0 1.0 1.0 1.0 0O(x,0) 0.0 0(0,t) = 0.0.(L,0) - 0.0 23

In the first problem the right hand side boundary condition .(x = L) is assumed to be applied at infinity.

This condition will be assumed in all problems considered in the following examples. For the heat

source term the value of S, is 1.0 at x = 0.5 and 0.0 elsewhere with I(0.5,t) = 1.0 This represents a

point heat source at x = 0.5 with unit heat generation per unit time. Numerical results for the prob-

lems described in Table 10 are given in Figs. 18 through 23.

The first problem is the typical case for the convection-diffusion equation for a constant tempera-

ture applied on the left hand side boundary. The physical boundary to the right is at infinity and the

computational boundary is at x - 1.0. Since the boundary condition O(Lr) - 0.0. is at infinity, then it

is physically incorrect to apply this boundary condition at x = 1.0. The temperature at x - 1.0 is zero

for small times (t < 1.0) but it is not zero for larger times. Therefore no boundary condition is

imposed at x = 1.0 and the computational model should be able to simulate an outflow boundary at

that point.
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In Fig. 18a results for the DFET model are given for four time intervals and the numerical solu-

tion is compared to the analytical one (solid lines). The agreement between the two is good and the

largest error occurs close to the right hand side boundary. Similar results are given in Fig. 18b for the

CFET model for the temperature distribution. The error of the CFET model is larger than the DFET

one throughout the computational domain. The larger error occurs mainly because of the error intro-

duced by the boundary conditions. The boundary forces resulting from the variational formulation are

given by

Q, ds (101)
Ox Oq,

for the CFET model, and

/* OH

Q, 0 ds (102)

for the DFET model.

If a boundary condition is described for the temperature at x . 0.0 (O(O,t) - 1.0) then

8080-0- 6-00
8qj

which means that the boundary force at x = 0.0 is zero for the CFET model. This is not the case for

the DFET model since 8H is not zero. At the other boundary (x - 1.0) the same is true for both

models if the temperature is described at that boundary. As was mentioned before no boundary condi-

tion is imposed at x = 1.0, which means that the boundary forces are not zero and should be included

in the calculation for both models. By retaining the boundary forces the results for the DFET model.

Fig. 18a, show a good agreement with the analytical solution and the boundary force accounts for the

neglected portion of the physical domain (x > 1). The inclusion of the boundary force in the compu-

tations for the DFET model is also in agreement with the theory since neither 0(1, ) nor 8 H, is zero.

Although theory and results are in agreement for the displacement formulation the same is not

true for the conventional one. If one retains the boundary force in the computations, the results, given

in Fig. 18c, show very large error close to the boundary (x - 1.0) but if the boundary force is set equal

to zero, even though E or 80 are not zero, then the results, given in Fig. 18b, show much less error
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and the temperature distribution is similar to the DFET model. This discrepancy in the results

obtained by the CFET model exists in all cases of solving problems in the semi-infinite space. There is

a deficiency of the conventional formulation in terms of properly simulating outflow conditions. For all

these types of problems even if the boundary conditions are not explicitly imposed, the boundary forces

should be zero for the CFET model. This is in agreement with the Galerkin approach and the term

"consistent model" will be used for the CFET model with no boundary forces. For the second problem,

where a sinusoidal wave (w = r/,2 ) is applied at the boundary (x = 0), results are presented in Figs.

19a and 19b for each of the two models. A comparison of these two figures shows a good arguement

between the two models but it should be noted that the results for the CFET model were obtained by

using a time step five times smaller than the one used for the DFET model. This is the case for all the

results obtained in this study, where in order to achieve results of about the same accuracy the CFET

model requires a time step five times smaller.

The next example, problem 3, is the case when a point heat source is present at x = 0.5. Results

for the DFET model are given in Fig. 20a and for the CFET model in Figs. 20b and 20c. In the last

two figures results are given for cases of omission and inclusion of the boundary force (x = 1.0

respectively as previously for problem 1. As one can observe from Fig. 20b (no boundary force) the

results for the consistent model are in good agreement with the ones of the DFET model, Fig. 20a.

But when the boundary force is included, Fig. 20c, the temperature distribution results in much larger

values close to the boundary (x = 1.0). This behavior of the CFET model is the same as previously in

problem 1. For the rest of the problems in this section the results for the CFET model are with no

boundary force. In problem 4 a point heat source is present, as in the previous problem, and the boun-

dary conditions are of no flow of heat at the left boundary and zero temperature at infinity. The results

for the two models are presented in Fig. 21a and 21b. The temperature distribution shows good agree-

ment at the left boundary but again at the outflow boundary the temperature is lower for the CFET

model. This has been the case for all three previous examples. If one now considers a infinite domain

and that the temperature is zero at -L and +L (L - oo), the heat generated by a point heat source

will be convected to the right and diffused in both directions according to the governing equation.
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model with boundary forces
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Numerical results for the solution of this problem are given in Fig. 22a and 22b for the two models.

The temperature distribution obtained from the CFET model is almost twice as high than the one

obtained in the DFET model at the left side of the computational boundary and it is lower to the right

of the heat source. Again this is due to the way that outflow boundary conditions are simulated by the

CFET model. As a last example for the convection and diffusion of heat a case is presented, problem

5, where heat is lost throughout the space ((0 < x < -c)) due to the heat transfer term in the govern-

ing equation. Results for this case are given in Fig. 23a and 23b for the two models. These two figures

should be compared with Figs. 20a and 20b where results are given for the same problem but with no

heat loss. As it is expected the temperature distribution for problem 5 is lower than the one for prob-

lem 3 throughout the computational domain.

For all case studies considered here both computational models give good results for problems

where the boundary conditions are well defined. On the other hand when the outflow conditions exist,

the CFET model yields results at that boundary which are always lower to the corresponding results of

the DFET model. Furthermore, for such cases where analytical solutions are available, a comparison

with the numerical solutions shows- that the CFET model yields always a lower distribution than the

DFET model.

The failure of the CFET model to simulate correctly outflow conditions is related mainly to the

fact that the conventional model cannot account for the presence of the physical space beyond the com-

putational one. This deficiency results in more heat flowing out at the end of the computational boun-

dary, thus lower temperature distributions. In the next section similar behavior is observed for the

diffusion of heat in the half space.

4.4.3 Diffusion Equation

In the case of a solid medium or a fluid not in motion the convective term of the transport equa-

tion is zero and the governing equation is given by

-- D,- - 0 (103)

at ax 2
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Fig. 22 - Temperature distribution ( Vo - 1.0, D o - 1.0, Problem 5):
(a) Displacement model and (b) Conventional model
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with O(x.t) the dimensionless temperature which is related to the heat displacement H(x,t) by Eq.

(98).
Table 11

Problem D, S" K, Initial Boundary Figure
roe D S Conditions Conditions

1 1.0 0.0 0.0 0(x,0) = 0.0 E(0,t) = 1.0 24
i L,t) = 0.0

2 1.0 0.0 0.0 O(x,0) = 0.0 0(0.t) = sin(wt) 25
(L.t) - 0.0

3 1.0 1.0 0.0 E(x, 0) = 0.0 E(0,t) = 0.0 26
0 (L,(t) = 0.0

4 1.0 1.0 0.0 0(x,0) = 0.0 0(-LAt) = 0.0 27
O(L,t) = 0.0

5 1.0 0.0 0.0 0(x,0) = 0.0 o(0,t) - 1.0 28
OilMt - 0.0

6 1.0 0.0 0.0 0(x, 0) = 0.0 O(0,) = 1.0 29
a@ (1,t) = 0.0ax

7 1.0 0.0 0.0 E(x.0) = 0.0 0(0,t) = 1.0 30

(0.0 = @(1IA
__ _( 1,) = Iilt)

8 1.0 1.0 0.0 O(x.0) = 0.0 E(0,t) = 0.0 31
O(ilt) = 0.0

9 1.0 1.0 0.0 0(x, 0) = 0.0 &0(O,t) = 0.0 32
ax

- 0.0

a0(O.t) =003

10 1.0 1.0 1.0 9(x,0) = 0.0 a0 = 0.0 33
aO(1,t) - 0.0
ax

The initial and boundary conditions associated with Eq. (103), for the case studies considered

here, are given in Table 11. The first four problems are for the diffusion of heat in the semi-infinite

space (L - c) and the last six for problems of finite space (0.0 < x < 1.0) . The first problem is the

classical case of constant temperature at x = 0.0 and zero temperature at infinity. Results are given in

Figs. 24a and 24b, for the two models, and they are compared to the analytical solution (solid line). As

was previously observed, for the case of convection-diffusion, the temperature distribution for the

CFET model is lower than the DFET model. The error in the results of the CFET model is larger for

the diffusion case than for the convection diffusion one. This should be expected since the diffusion

term is the dominent term in the present case, thus the boundary force plays a more important role in

simulating outflow conditions. Similar observations can be made for the third and fourth problems,
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Fig. 24 - Temperature distribution (V0 - 0.0. Do - 1.0, Problem 0):
(a) Displacement model and (b) Conventional model
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Figs. 26 and Figs. 27. For both problems a point heat source is located at x - 0.5 and the boundary

conditions are given in Table 11. For problem 3 a comparison of results between the DFET model,

Fig. 26a and the consistent CFET model (no boundary force at x = 1.0), Fig. 26b, shows a much lower

temperature distribution to the right of the heat source. The opposite is true for the results of the

CFET model of Fig. 26c.

In the next problem where the computational domain represents an infinite physical domain the

temperature distribution should be symmetric with respect to the point heat source. This is true for the

results of the DFET model, Fig. 27a, and the results of the CFET model when the boundary forces are

included, Fig. 27c but it is not true for the results obtained by the consistant CFET model. Throughout

the results presented in the previous and present sections an important difference exists between the

two models. The implementation of the DFET model to solve problems with unbounded domains

results in computational models where no inconsistancies exist between the physical and mathematical

aspects of the problem. Although this is the case for the DFET model, it is not true for the CFET

model where the absence of the boundary forces result in a better numerical solution but the physical

and mathematical aspects of the problem contradict each other.

In the last part of this section the diffusion of heat is-considered for a finite domain, a slab of

thickness one, and the boundary condition for the different cases are given in Table II. In all exam-

ples, problems 5 - 10, the numerical results of the two models are of about the same accuracy. For the

finite domain problems, the boundary conditions are applied on both boundaries. The boundary forces

are zero for the CFFT model (all examples) but for the DFET model the boundary forces are zero only

if the specified boundary temperature is zero. Otherwise the values of the boundary forces depend on

the values of the temperature at each boundary.

The numerical results of problems 5 through 10 are presented in Figs. 28 through 33 for the two

models. Comparing the results obtained by the two models one can easily observe that the numerical

solutions are almost identical. The only difference is that the results of the CFET model were obtained
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Fig. 29 - Temperature distribution (VO - 0.0, D o - 1.0, Problem 6):

(a) Displacement model and (b) Conventional model
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by using a time step size five times smaller than the one used for the DFET model. Therefore from

the computational point of view the displacement formulation is more efficient since it requires less

time to solve a problem. If the problem to be solved does not have outflow boundary conditions, both

models produce numerical solutions of the same accuracy.

Throughout the examples presented here one can observe the displacement formulation, the

DFET model, is more consistent than the conventional one with respect to handling different physical

problems. This is justified not only from the numerical solutions obtained but also from the formula-

tion on which the displacement model is based.

SUMMARY AND CONCLUSIONS

A variational formulation for the transport equation has been presented in this study, and, based

on this formulation, a generalized approach to approximate solutions has been developed. As a special

application to approximate solutions four computational models were derived for obtaining numerical

solutions to different types of transport problems. The models are based on first-order finite element

approximations for both the spatial arid time coordinates. Two of the models are derived from the fun-

damental variational analysis in terms of the transport displacement and the other two are derived from

the complementary variational analysis in terms of primitive transport variable. Although only linear

and one-dimensional models were considered here, higher order and multi-dimensional models can be

easily obtained since the derived formulation is not restricted to one type of approximation or one

dimension.

An evaluation of the four computational models with respect to accuracy and efficiency was car-

ried out, first, by numerical experimentation on the error behavior and, second, by obtaining numerical

solutions to specific boundary value problems.

The investigation of the error of the numerical solution shows that the displacement models not

only are more consistent in the error behavior than the conventional ones, but also that the overall
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error of the numerical solutions, obtained by the displacement models, is always smaller than the error

of the solutions obtained by the conventional ones. The larger error of the conventional models is par-

tially because they are derived from the complementary variational principle, which according to the

theory is less accurate than the corresponding fundamental variational principle. Numerical solutions to

heat transport problems obtained here also justify this argument. Furthermore, these solutions showed

the inability of the conventional models to correctly simulate outflow boundary conditions.

Although the two types of computational models have some common characteristics in behavior,

the conventional ones are less efficient from both accuracy and computational effort points of view.

Displacement models have been used widely in structures, but as it has been shown these models can

be extended to other types of problems as well. Furthermore, the fundamental form of the variational

analysis can be derived, based on concepts of classical mechanics presented here, for many governing

equations.

In conclusion, the generalized variational analysis and the unified approach in obtaining approxi-

mate solutions should be emphasized as well as the applicability of the analysis to other physical prob-

lems. It should be also noted that the finite element method, which was presented in this study, is only

one restricted application of the generalized formulation.
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